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a b s t r a c t

Line-transect analysis is a widely used method of estimating plant and animal density and abundance. A
Bayesian approach to a basic line-transect analysis is developed for a half-normal detection function. We
extend the model of Karunamuni and Quinn [Karunamuni, R.J., Quinn II, T.J., 1995. Bayesian estimation
of animal abundance for line-transect sampling. Biometrics 51, 1325–1337] by including a binomial like-
lihood function for the number of objects detected. The method computes a joint posterior distribution
on the effective strip width and the density of objects in the sampled area. Analytical and computational
methods for binned and unbinned perpendicular distance data are provided. Existing information about
effective strip width and density can be brought into the analysis via prior distributions. The Bayesian
ensity estimation
alf-normal detection function
ayesian methods
rior distribution

approach is compared to a standard line-transect analysis using both real and simulated data. Results
of the Bayesian and non-Bayesian analyses are similar when there are no prior data on effective strip
width or density, but the Bayesian approach performs better when such data are available from previous
or related studies. Practical methods for including prior data on effective strip width and density are
suggested. A numerical example shows how the Bayesian approach can provide valid estimates when the
sample size is too small for the standard approach to work reliably. The proposed Bayesian approach can

ping m
form the basis for develo

. Introduction

Estimating animal abundance is fundamental to successful man-
gement and conservation of animal populations. Line-transect
nalysis is a commonly used method of estimating density and
bundance for a variety of species (Buckland et al., 2001). The fun-
amental idea behind a line-transect analysis is that the probability
f detecting an object depends on the distance of the object from
he transect line and, possibly, on other variables. Data are collected
y moving along a predetermined transect line and recording the
istances perpendicular to the transect line at which the objects of

nterest are detected. If the objects occur in groups or clusters, such
s flocks of birds or schools of dolphins, the number of animals in
ach group is also recorded. The central task of a line-transect anal-
sis is to estimate an “effective width” of the transect strip based
n the observed perpendicular distances. If the effective width on
ach side of the transect line is � (technically called the effective

trip half-width, or ESW), the density of objects D is

=
∑n

i=1si

2L�
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ore advanced analyses.
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where n is the number of detected clusters (groups), si the number
of animals in each group, and L is the total length of the transect. In
a standard line-transect analysis, � is estimated by fitting a prob-
ability density function f to the perpendicular distances, and the
density estimator is

D̂ = nf̂ (0)Ê[s]
2L

(1)

where f̂ (0) = 1/� is the estimated probability density function of
the observed perpendicular distances y evaluated at y = 0, and Ê[s]
is the expected cluster size (Buckland et al., 2001). Abundance N is
estimated as

N̂ = AD̂ (2)

where A is the total area of the study site. The estimation process
in a standard line-transect analysis uses the likelihood principle
because of statistically attractive properties of maximum likelihood
estimators (MLE), such as consistency and invariance (e.g., Hogg and
Craig, 1995; Casella and Berger, 2002).

Inference based on likelihood functions also can be made

via Bayesian methods. Bayesian methods are becoming widely
used in ecology because they have both theoretical and prac-
tical advantages (Ellison, 1996; Wade, 2000). Intuitively, the
Bayesian approach combines existing data (prior distributions)
with new data to produce an updated state of information (posterior

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:tomo.eguchi@noaa.gov
dx.doi.org/10.1016/j.ecolmodel.2009.04.011
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istributions). When new data are limited, estimation can be
mproved by using existing data from past or related studies. Fur-
her, interpretations of Bayesian posterior distributions are clearer
han those of confidence intervals, particularly when critical deci-
ions have to be made based on uncertain information (Goodman,
004). Finally, hierarchical Bayesian models offer a flexible and real-

stic approach to ecological research (Clark and Bjørnstad, 2004;
lark et al., 2005).

Karunamuni and Quinn (1995) described a conjugate Bayesian
stimation of a half-normal detection function, and showed that the
ayes estimator was better than the maximum likelihood estima-
or, based on relative and squared error loss. We extend this work to
ull density estimation by including a binomial likelihood function
or the number of objects detected on the transect line, which has
een discussed in the non-Bayesian framework (e.g., Seber, 1973;
en et al., 1974; Quinn and Gallucci, 1980; Borchers and Burnham,
004). We formulate prior information on the detection function

n terms of the ESW (�), a central concept in line-transect anal-
sis (Burnham et al., 1980). Perpendicular distances may either
e recorded exactly (“unbinned” data) or recorded less precisely

n distance categories (“binned” data). The performance of the
roposed Bayesian approach is tested with previously analyzed

ine-transect data sets as well as simulated data. We compare the
ayesian approach to results using the standard line-transect soft-
are Distance (Thomas et al., 2003) by assessing bias and precision
ith simulated data. The proposed approach does not incorporate

dvanced developments of line-transect analyses (Buckland et al.,
004). However, the proposed approach can be extended to more
dvanced settings.

. Methods

In the following sections, we introduce notation and assump-
ions (Section 2.1), explain the overall approach (Section 2.2),
escribe likelihood functions for the number of detected objects
Section 2.3.1), unbinned perpendicular distances (Section 2.3.2)
nd binned perpendicular distances (Section 2.3.3), illustrate prior
istributions for ESW (Section 2.4.1) and density (Section 2.4.2),
escribe the method of obtaining posterior distributions (Section
.5), and introduce performance testing processes (Section 2.6).

.1. Notation and assumptions

Following Buckland et al. (2001), we use standard line-transect

otation (Table 1). The standard assumptions of a line-transect anal-
sis are (e.g., Buckland et al., 2001):

1. The population of interest is closed from immigration, emigra-
tion, birth, and death during the survey.

able 1
otation.

ymbol Description

Total area of the study site
Length of transect
Maximum perpendicular distance of detected objects, or
truncation distance
Sampled area = 2LW
Number of objects detected within sampled area a
Perpendicular distances of the n detected objects

a Number of objects within sampled area a
a Probability of detecting an object within sampled area a
(y) Probability density function of perpendicular distances
(y) Probability of detection as a function of perpendicular distance

Parameter(s) of the detection function g(y)
Effective strip half-width (ESW)
Precision (1/variance) for the half-normal detection function
delling 220 (2009) 1620–1630 1621

2. The transect line is placed randomly in the study area such that
sampled area (a) is a random sample of the total area (A).

3. Objects do not move in response to the observation process
before they are detected.

4. Measurements of perpendicular distance are exact.
5. Distance data are independent of the total number of objects.
6. Objects on the track line are detected with certainty; that is,

g(0) = 1.
7. The detection function g(y) is proportional to the probability den-

sity function f(y) for perpendicular sighting distances y; that is,
g(y) ∝ f(y) for all y.

8. Detection of each object is an independent event, regardless of
the spatial distribution of the objects.

Note that assumptions (6) and (7) together imply that � = 1/f(0)
and g(y) = �f(y).

2.2. Overview

In this initial development of a basic Bayesian model, we assume
that objects occur singly (i.e., E[s] = 1 in Eq. (1)) and that probabil-
ity of detection depends on perpendicular distance only. Following
standard practice, we assume A, L, W and a are known without error,
but that data n and y are observed as a result of stochastic processes.
The parameter of primary interest to be estimated is Na, the num-
ber of objects in the sampled area, from which density and total
abundance can be estimated. The overall approach to the follow-
ing development is to compute the conditional joint probability
distribution of Na and �, which includes all parameters that affect
f(y). According to Bayes’ theorem, and making use of the assumed
independence of Na and � (assumption (5)), the joint posterior is:

p(Na, �|y, n) ∝ p(n|Na, �)p(y|�)p(Na)p(�), (3)

where p(n|Na, �) is the likelihood function for n, p(y|�) is the likeli-
hood function for y, and p(Na) and p(�) are the prior distributions
for Na and �, respectively. The marginal posterior distribution of Na

is obtained from (3) by integrating over �:

p(Na|y, n) =
∫ ∞

−∞
p(Na, �|y, n) d�, (4)

where the integral may be over more than one parameter. Using
the conventional design-based approach, density is estimated as
D = Na/a and total abundance as N = DA (Eq. (2)), because both a and
A are assumed known without error. Existing information about
abundance and the detection process is included in analysis via the
prior distribution on abundance and the prior distribution on the
parameters of the detection function. If no previous information
exists, either or both of these functions may be set to uniform or
other distributions that provide equal or nearly equal probabilities
over a broad range of possible values. We call such distributions
vague prior distributions. Although these distributions also have
been called noninformative or uniform distributions, we prefer
“vague prior” because these distributions can be informative and
they may not be strictly uniform.

2.3. Likelihood functions

2.3.1. Number of detections
In (3), we first consider the likelihood function p(n|Na, �) for the

number of objects n detected in the sampled area. It is convenient to

define Pa, the probability of detecting an object within the sampled
area a as

Pa(�) =
∫ W

0
g(y|�) dy

W
= �

W
. (5)
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The notation emphasizes that the probability of detecting an
bject within the sampled area is a function of the parameters � of
he detection function. Geometrically, detection probability is the
roportional area under the detection function within the W × g(0)
ectangle (Buckland et al., 2001). For notational brevity, we now
rite Pa instead of Pa(�).

Using (5) and assumption (8), each sighting is modeled as
Bernoulli trial with common detection probability Pa (Seber,

973; Borchers and Burnham, 2004). Given the total number of
vailable objects in the sampled area Na and the detection prob-
bility Pa, the observed number of objects n follows a binomial
istribution:

(n|Na, �) =
(

Na

n

)
Pn

a (1 − Pa)Na−n. (6)

Note that Borchers and Burnham (2004) used Nc (our Na) to
enote the total number of available objects in the sampled area.

.3.2. Unbinned perpendicular distances
In (3), we next consider the likelihood function p(y|�) for per-

endicular distances, in the case when distances are measured
xactly (unbinned data). The half-normal detection model has a sin-
le parameter, the variance �2. Following Karunamuni and Quinn
1995), it is more convenient to work with precision � = 1/�2. For
he half-normal detection function, � is directly related to ESW
�) and f(0) as � = �/(2 �2) = �/(2f(0)2). We assume that knowl-
dge of � can be represented by a gamma distribution with
yperparameters ˛ and ˇ, where � > 0, ˛ > 0, and ˇ > 0. Because
f the conjugate property between normal and gamma distribu-
ions, the joint posterior of Na and � conditional on the observed
ata is the following (Appendix A):

(Na, �|y, n) ∝ p(Na)�˛2−1 exp(−�ˇ2)
� (Na+1)

� (Na−n+1)
Pn

a (1−Pa)Na−n,

(7)

here ˛2 = ˛ +n/2 and ˇ2 = ˇ +
∑

y2
i
/2, i = 1, . . ., n.

.3.3. Binned perpendicular distances
If, instead of being recorded exactly, perpendicular distances y

re grouped into u groups or bins, the likelihood function is multi-
omial with bin-specific probabilities (Buckland et al., 2001, p. 62):

i =
∫ ci2

ci1

f (y|�) dy, (8)

here (ci1, ci2) is the interval spanning the i-th group, i = 1, . . ., u.
he likelihood function of the parameter is:

(�|n, �) = n!∏u
i=1ni!

∏u

i=1
ωni

i (9)

here n =
∑u

i=1ni, n = [n1, . . ., nu], and � = [ω1, . . ., ωu].
For the half-normal detection function � = {�}, as in the

nbinned data. Combining (8) and (9), the probability function of
ata conditional on parameters � is:

(y|�, n) = n!∏u
i=1ni!

u∏
i=1

(∫ ci2

ci1

f (yi|�) dy

)ni

. (10)

This likelihood function (10) is used in (3) to obtain the posterior
istribution for Na and �.
.4. Prior distributions

Next we consider the prior distributions p(�) and p(Na) in Eq. (3).
n the case of the half-normal detection function, p(�) = p(�). If prior
delling 220 (2009) 1620–1630

information on Na or � exists, it will usually be in terms of density
D and effective strip width �. Therefore, we use simple algebraic
relationships between � and effective strip width (� = �/(2 �2)) and
between Na and density (Na = aD) to develop the priors on � and
Na.

2.4.1. Effective strip width
Prior information on ESW (�) needs to be transformed into a

gamma prior distribution on � to utilize the conjugate approach
described in (Section 2.3.2). We use a numerical approach to accom-
plish this task. Given an estimated mean �̂ and variance v� of
ESW from auxiliary data, we find appropriate gamma parameters
˛� = �̂2/v� and ˇ� = �̂/v�. We then generate random variables
�r from this gamma distribution and fit a second gamma dis-
tribution to the values of �/(2�2

r ) (= �r) using the method of
moments (Appendix B). Although unsophisticated, this approach
provides a practical and adequate method for including prior
data on ESW into the conjugate Bayesian analysis (Appendix
C). Alternatively, a non-conjugate approach could represent prior
information on � directly with, for example, a gamma distribu-
tion.

2.4.2. Density
Prior information about density D may be represented by a

gamma distribution:

p(D|�, 	) = 	�

� (�)
D�−1 exp(−D	), (11)

where D > 0, � > 0, and 	 > 0. A non-vague prior distribution
may be constructed from a previous estimate of density D̂
with variance vD. The parameters of a prior gamma distribu-
tion for D can be obtained by using � = D̂2/vD and 	 = D̂/vD.
The prior distribution p(Na) is a simple transformation of p(D|� ,
	) because D = Na/a. Consequently, p(Na) is also a gamma distri-
bution with parameters (� , 	/a). When using the gamma prior
distribution for the density, the joint posterior for unbinned data
becomes:

p(Na, �|y, n) ∝ N�−1
a �˛2−1

× exp
(

−�ˇ2 − 	Na

a

)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na−n, (12)

because of the conjugate property between two independent
gamma distributions.

In practice, a prior distribution for a previously studied area may
be constructed from the mean and variance estimates of the density
(D̂ and vD, respectively). For areas with no previous estimates, the
gamma parameters (� and 	) can be set such that it provides a vague
prior distribution. Small values of � and 	, or equivalently large
variance of the density (vD) with respect to the mean (D̂), result in
such distributions.

2.5. Posterior inference

We use a Markov chain Monte Carlo (MCMC) method, specifi-
cally the Metropolis-Hastings algorithm, to sample from the joint
posterior distribution of Na and �. Details of the algorithm can be
found in Metropolis et al. (1953) and Hastings (1970). Less techni-
cal references on the algorithm and other MCMC methods include
Martinez and Martinez (2002), Berg (2004), and Clark (2007). The
Metropolis-Hastings algorithm produces random samples from a

distribution by using the first order Markov process. To implement
the algorithm, computer programs were written in the program-
ming language C, whereas Matlab (The MathWorks, Inc., Natick,
MA) was used for user interface, data manipulation, and graph-
ical outputs. We used two phases of the algorithm to tune the
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Fig. 1. Prior distributions for effective strip width (ESW) used in the analyses. (A)
The three prior distributions used for wooden stake data analysis. (B) The four
prior distributions used for duck-nest data analysis. (C) The four prior distributions
used for the analysis of 500 simulated data. The vertical dotted line indicates the
true ESW (0.396 km). (D) The two prior distributions for the simulated two-year
T. Eguchi, T. Gerrodette / Ecologi

omputation process. During the first phase (burn-in phase), a
ide range of the parameter space was searched for a high-density

rea by running multiple independent Markov processes (hereafter
alled Markov chains). The starting point of each Markov chain
as randomly selected from uniform distributions for the parame-

ers. Resulting posterior samples from the burn-in phase were used
o make the algorithm more efficient for the second phase (sam-
ling phase). For our analysis, we used four independent Markov
hains of 10,000 steps as a burn-in phase, followed by four inde-
endent Markov chains of 100,000 steps as a sampling phase. To
void the serial correlations within each chain during the sampling
hase, every third step was retained for computing the summary
tatistics. Samples from the burn-in phase were not used for the
nference process. Convergence of Markov chains was determined
y using the R̂ statistic (Gelman et al., 2004). The algorithm for
nbinned data also was implemented in WinBugs (Lunn et al., 2000;
esults not shown). The WinBugs codes are in Appendix D, whereas

and Matlab programs are available on request from the first
uthor.

.6. Performance testing

To test the performance of the proposed method, we ana-
yzed four datasets with the proposed Bayesian approach. The
ame datasets were analyzed with Distance software, which uses a
ombination of maximum likelihood and Horwitz–Thompson esti-
ators (Thomas et al., 2003). We analyzed two real datasets which

re publicly available, one binned and one unbinned, and two sim-
lated datasets which are available from the first author. For the
imulated data, performance was measured by precision (widths
f 95% posterior (Bayesian) and 95% confidence (Distance) inter-
als) and bias. For both density and ESW, bias was computed as
he difference between the point estimate (median of posterior for
ayesian) and the true value. For some examples, we also computed
he mode of the posterior by smoothing with a normal kernel den-
ity function and then numerically differentiating the smoothed
osterior.

.6.1. Real data
The real unbinned dataset was collected by Laake (1978), who

laced 150 wooden stakes randomly within a rectangular area
f sagebrush-grass near Logan, Utah. The length of the transect
ine (L) was 1000 m. The true density of the stakes was 37.5
takes per hectare. The dataset has been used in a variety of lit-
rature (e.g., Burnham et al., 1980, p. 61, Quang, 1990) and is
vailable on the Internet. In Distance, we used the half-normal
istribution as the key detection function, and no adjustment
erms were considered. We analyzed the data with perpendicu-
ar distances truncated at 20 m and also without truncation. For
he Bayesian analysis, we used a vague prior distribution for the
ensity within the study area. For the prior distribution of ESW,
e used a gamma distribution with a mean of 10 m and vari-

nces of 0.02, 0.2, or 2.0 (Fig. 1A). The small variance provides
prior for which the majority of density is concentrated over a

mall range of ESW, whereas the large variance is for a vague
rior.

The real binned data are line-transect counts of duck nests of
nknown species at the Monte Vista National Wildlife Refuge in
olorado during 1969–1974 and 1986–1987 (Buckland et al., 2001,
. 341). Details of the data collection and effort can be found in
ilbert et al. (1996). The true density of duck nests is unknown in
his case. The total effort was L = 1244.3 miles (2002.5 km), and the
aximum observed distance was W = 11.5 ft (3.5 m). As with the
ooden stake data, we used half-normal model with no adjustment

erms for Distance. A vague prior for density and a range of priors
ere used for ESW (Fig. 1B). We purposely set the prior mean at
dataset. The dotted vertical lines indicate the true ESW for two years (0.125 km and
0.089 km).

5 ft (1.5 m), which was less than the estimate from Distance, to
show the effects of inaccurate prior distributions on the posterior
distributions.

2.6.2. Simulated data
To simulate line-transect data, we used the method described

in Buckland et al. (2001) with the half-normal detection func-
tion. Expected sample size (E[n]) of each simulated dataset was a
function of the length of the transect line (L), the variance of the
half-normal detection function (�2), and the true density (D) of the
objects (Buckland et al., 2001, pp. 92–93).

E[n] = 2 × L × D

f (0)
(15)

where f (0) =
√

2/(��2). Sample size for each simulation was
randomly drawn from a Poisson distribution with the expected
sample size. The true density was fixed at 0.1 km−2. The true
detection function was half-normal with variance �2 = 0.1, which
corresponded to a true ESW of 0.396 km. A total of 500 simulated
datasets were analyzed as ‘unbinned’ and ‘binned’ data. Binned data
were created using Distance, where 10 bins of equal width were
used.

To assess the effects of prior distributions on the analysis,
we analyzed the simulated data with four different priors on
ESW (�) from two means (0.396 and 0.8 km) and two variances
(0.01 and 0.5; Fig. 1C). The prior with �̂ = 0.396 km and v� = 0.5
was an exponentially decreasing function with respect to ESW,
whereas the prior with �̂ = 0.8 km and v� = 0.5 provided essen-
tially uniform probability over the parameter space of interest
(Fig. 1C).

Finally, to demonstrate the ability of the Bayesian method to
use prior information to improve estimates of abundance with
scarce data, we simulated a two-year study, in which the den-

sity was unchanged over the two years, but ESW and effort (L)
changed. This simulates a common situation where weather or
logistical conditions prohibit researchers from allocating simi-
lar effort in two consecutive years. The first year’s data were
simulated with the true density of D1 = 0.04 km−2, the true vari-
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nce of the detection function was �2
1 = 0.01 (�1 = 0.125 km),

nd the effort was 5000 km. For the second year, the underly-
ng true density did not change, D2 = 0.04 km−2, but the effective
trip width decreased; �2

2 = 0.005 (�2 = 0.089 km), and the effort
ecreased by 80% (1000 km). We analyzed the first dataset with
ague prior distributions on ESW (�̂ = 1.0, v� = 1.0; Fig. 1D) and
vague prior distribution on density. The result from the anal-

sis for the first year was used for the prior distributions in
he analysis of the second year’s data. The same datasets also
ere analyzed using Distance, treating them as two indepen-
ent datasets and with a hierarchical approach using the data
or both years to assume a common detection function for both
ears.

. Results

.1. Real data

Despite inclusion of the additional uncertainty of the sam-
ling process in the model, i.e., the binomial term, the proposed
ayesian approach performed well in all performance tests. A pre-
ise posterior distribution was obtained for the wooden stake
ata (Fig. 2) and convergence of MCMC was reached accord-

ng to the R̂ statistic. There was a negative correlation between
ensity and ESW in the joint posterior distribution (Fig. 2). The
ariance of prior distributions had small effects on the posterior
istributions (Table 2). The median density was approximately
4 stakes per hectare, where the widths of 95% posterior prob-
bility intervals (PI) were <17 (Table 2). The estimated density
y Distance was 33.1, whereas the width of the 95% confidence
nterval (CI) was approximately 18 (Table 2). The true density
37.5 stakes per hectare) was within posterior and confidence
ntervals. Truncation of data at 20 m resulted in narrower ESW
nd greater density for both Distance and the Bayesian approach
Table 2). The Bayesian approach resulted in narrower intervals
han results of Distance (2.5 m vs. 3.1 m and 16.6 ha−2 vs. 21.3 ha−2;
able 2).

For the duck-nest data, the estimate of ESW from Distance was
.6 ft (2.3 m) and the estimated density was 58.2 nests per square
ile (95% CI = 48.5–69.8; Table 3). The Bayesian approach indi-

ated the obvious consequences of precise but inaccurate prior
istributions on inference (Fig. 3). For the extreme case, where the
rior mean on ESW was 5.0 ft and the variance 0.01, the posterior
ean for the ESW was less than the Distance estimate and the

ensity was greater than the Distance estimate (Table 3). The differ-

nce decreased as the variance of the prior distribution increased
Table 3). When the prior variance was 10 (i.e., vague prior), the

edians of the posterior were approximately equal to the estimate
rom Distance, as expected. The widths of PI’s were narrower than
hose of the CI’s (Table 3).

able 2
ummary statistics of analyses of wooden stake data. Prior mean and variance of ESW are i
Med), mode, and 95% posterior intervals are presented for Bayesian analysis. For the max
nd 95% CI are shown for the interval. Rows with “Truncation” headings indicate results f

Prior �

�̂ v� Med Mode

ayesian 10.00 0.02 10.0 10.0
10.00 0.20 10.0 10.0
10.00 2.00 10.1 10.1

runcation 10.00 2.00 9.2 9.2

istance 10.3

runcation 9.4
vague prior was used for density. The prior and marginal posterior on the precision
(�) are shown in (D). The prior for � was calculated from the prior for ESW using the
method described in the text.

3.2. Simulated data

Analyses of simulated datasets allowed us to evaluate effects
of sample size and prior distributions on bias and precision of
posterior distributions. Convergence was reached for all MCMC
implementations according to the R̂ statistic. For unbinned datasets,
the inclusion proportion of 95% PI’s for ESW was approximately
0.97, whereas for 95% CI’s it was 0.41. Widths of 95% PI’s were gen-
erally narrower than those of 95% CI’s regardless of the choice of
prior distribution (Fig. 4). In general, widths of 95% PI’s and CI’s had
long tails, where CI’s had more extreme values than the PI’s. Similar
results were found for when data were binned (results not shown).
Effects of priors were less for the binned data analysis than for the
unbinned datasets. For binned datasets, the inclusion proportion of
95% PI’s for ESW was approximately 0.97, whereas that of 95% CI’s
was 0.46.

For unbinned and binned datasets, biases of density for simu-

lated datasets indicated the Bayesian and the Distance approaches
provide similar results, except when the prior was inaccurate and
precise (�̂ = 0.8, v� = 0.01; Fig. 5). Such an informative prior over-
whelmed the data, and the estimated density was negatively biased.
For the same prior, the ESW was estimated consistently greater

ndicated by �̂ and v� , respectively. D indicates density and � indicates ESW. Median
imum likelihood approach, the point estimate (Distance) is presented under Mode

or analyses when perpendicular distances were truncated at 20 m.

D

Interval Med Mode Interval

[9.7, 10.3] 34.2 34.3 [28.0, 41.4]
[9.3, 10.9] 34.2 34.3 [27.5, 41.9]
[8.8, 11.8] 33.6 34.3 [26.4, 42.4]

[8.1, 10.6] 36.6 36.4 [29.7, 46.3]

[9.1, 11.6] 33.1 [25.3, 43.3]

[8.0, 11.1] 35.7 [26.6, 47.9]
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Table 3
Summary statistics of analyses of binned duck-nest data. Prior mean and variance of ESW are indicated by �̂ and v� , respectively. D indicates density and � indicates ESW. Data
were grouped into 11 equal-width bins. Posterior distributions are summarized in median (Med), mode, and 95% posterior interval. For the maximum likelihood approach,
the point estimate (Distance) is presented under Mode and 95% CI are shown in the interval column.

Prior � D

�̂ v� Med Mode Interval Med Mode Interval

Bayesian 5.0 0.01 5.3 5.3 [5.10, 5.47] 83.2 81.9 [74.8, 92.7]
5.0 0.05 6.0 5.9 [5.59, 6.35] 74.0 74.3 [66.0, 82.3]
5.0 0.5 7.1 7.2 [6.41, 7.90] 61.8 59.4 [54.1, 71.0]
5.0 10.0 7.5 7.5 [6.73, 8.54] 58.3 58.6 [50.5, 67.5]

Distance 7.6 [6.69, 8.51] 58.2 [48.5, 69.8]

Fig. 3. Joint and marginal posterior distributions of effective strip width (ESW) and
density for the analysis of duck-nest data. The contour plot (A) is the joint posterior
distribution, whereas (B) and (C) are the marginal distributions. Prior distributions
are shown as dotted lines. Only one set of prior and posterior distributions is shown,
where �̂ = 5 and v� = 0.5 and a vague prior on density. The prior and marginal pos-
terior on the inverse of variance (�) are shown in (D). The prior for � was calculated
from the prior for ESW using the method described in the text. The abscissa of the
bottom right figure is truncated to show the width of the posterior distribution.

Fig. 4. Distribution of widths of 95% posterior and confidence intervals for esti-
mates of density and ESW, for analyses of 500 simulated datasets when data were
not binned. Boxes show inter-quartile ranges (25–75 percentiles) and whiskers 90-
quantile ranges (5–95 percentiles). The horizontal line in each box is the median.
The prior mean and variance of ESW for the Bayesian analyses are indicated along
the abscissa (�̂/v�). Distance indicates the analysis using Distance software.

Fig. 5. Distribution of bias of density and effective strip width (ESW) for analyses
of 500 simulated datasets when data were not binned. Boxes show inter-quartile
ranges (25–75 percentiles) and whiskers 90-quantile ranges (5–95 percentiles). The
horizontal line in each box is the median. The prior mean and variance of ESW are
indicated along the abscissa (�̂/v�). Distance indicates the analysis using Distance
software.

Fig. 6. The difference in widths of 95% confidence (CI) and posterior (PI) intervals
for density and effective strip width (ESW), as a function of sample size (i.e., the
number of detected objects) for the analysis of 500 simulated datasets. Data were
not binned. Results of Bayesian analyses were based on the prior distribution with
�̂ = 0.8 and v� = 0.5, and a vague prior on density.
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Table 4
Point and 95% interval estimates for the analysis of the simulated two-year dataset. D
indicates density and � indicates ESW. The true ESW were 0.125 km for the first year
and 0.089 km for the second year. True densities were 0.04 km−2 for the both years.
The prior mean and variance of ESW for the first year were, �̂ = 1.0, and v� = 1.0,
whereas for density, a vague prior was used. For the second year, the prior means
and variances were �̂ = 0.12, v� = 0.004, and D̂ = 0.04, vD = 0.0001. Estimates for
the second year using Distance (Distance1) were given with a warning (see text for
details). A global model for the two years was used to alleviate the small sample
size of the second year in Distance2. The point estimates for Bayesian analysis were
medians of posterior distributions.

Bayesian Distance1 Distance2

Year 1
� 0.12 [0.10, 0.15] 0.13 [0.11, 0.16] 0.12 [0.10, 0.15]
D 0.05 [0.04, 0.06] 0.04 [0.03, 0.06] 0.05 [0.03, 0.06]

Year 2
�
D

t
a

a
D
i
1
n

B
a
t
s
v
t
d
d
0

a
U

F
t
o
t
p

0.08 [0.06, 0.13] 0.09 [0.05,0.15] 0.12 [0.10,0.15]
0.04 [0.03, 0.06] 0.05 [0.02, 0.12] 0.03 [0.02, 0.07]

han the true ESW. The bias for ESW was greater for the Distance
pproach than for the Bayesian approach.

For both binned and unbinned data, we found that the Bayesian
pproach performed better, in terms of widths of 95% intervals, than
istance when the sample size was small (Fig. 6). The difference was

nsignificant when the sample size was greater than approximately
00. For the majority of the analyses of simulated datasets, PI’s were
arrower than CI’s (Fig. 6).

Analyses of the simulated two-year data set illustrated how the
ayesian method may be used when information is available from
previous year. Using Distance, the point estimate of the ESW for

he first year was 0.13 km (95% CI = 0.11–0.16), whereas for den-
ity, the point estimate was 0.04 km−2 (95% CI = 0.03–0.06). Using
ague prior distributions, the median of the marginal posterior dis-
ribution for ESW was 0.12 km (95% PI = 0.10–0.15), whereas for
ensity, it was 0.05 km−2 (95% PI = 0.04–0.06; Table 4). The true

−2
ensity for the first year was 0.04 km whereas the true ESW was
.125 km.

For the second year, because of much less effort (L = 1000 km)
nd a narrower ESW (� = 0.089 km), the sample size was only eight.
sing solely the second year’s data the point estimate from Distance

ig. 7. Posterior distributions for the analysis of the second year of the simulated
wo-year dataset. Prior distributions (dotted lines) were constructed from the results
f the analysis of the first year’s data. The contour plot (A) is the joint posterior dis-
ribution, whereas (B) and (C) are the marginal distributions. The prior and marginal
osterior on the precision (�) are shown in (D).
delling 220 (2009) 1620–1630

for the ESW was 0.09 km (95%CI = 0.05–0.15), whereas for the den-
sity, it was 0.05 km−2 (95% CI = 0.02–0.12 km−2). However, Distance
software provided a warning about the small sample size, cau-
tioning not to expect reasonable results. In other words, although
the estimates were close to the real values, no reliable estimate
was available using the Distance approach. A hierarchical approach
in Distance alleviated the problem of small sample size, i.e., a
global model for all data and separate estimates of density for two-
year datasets. Distance reported the point estimate of ESW to be
0.12 km (95% CI = 0.10–0.15), whereas for densities, the point esti-
mates were 0.05 km−2 (95% CI = 0.03–0.06 km−2) for the first year
and 0.03 km−2 (95% CI = 0.02–0.07 km−2) for the second year. For
the Bayesian analysis, we used the results from the analysis for
the first year’s data to build the prior distribution for the second
year’s data, assuming the similar sampling process (�̂ = 0.13 km
and v� = 0.052). For density, we used D̂ = 0.05 and vD = 0.022.
Convergence was reached for the MCMC according to the R̂ statis-
tic. The median of the ESW was 0.08 km (95% PI = 0.06–0.13 km),
whereas for density, it was 0.04 km−2 (95% PI = 0.03–0.06;
Fig. 7).

4. Discussion

The analysis of wooden stake and duck-nest datasets demon-
strated the utility of the proposed Bayesian approach. Although
the differences in point estimates between the Bayesian and Dis-
tance approaches were small, widths of uncertainty measures (CI’s
and PI’s) were generally less for the Bayesian approach. With these
datasets, the effects of prior distributions were negligible, indi-
cating even a moderate sample size (n = 68 in the wooden stake
dataset) can override the influence of prior distributions. Trunca-
tion of data also resulted in more precise estimates for the Bayesian
approach than for the Distance approach. An additional analysis
on the wooden stake dataset with a more vague prior distribu-
tion (v� = 50) resulted in narrower 95% PI for ESW (7.7–10.6) and
for density (29.9–47.9) than the results of Distance (results not
shown).

Prior distributions are a unique feature of Bayesian statis-
tics. Prior distributions bring data from past or related studies to
the current analysis. From the Bayesian point of view, the cur-
rent state of knowledge is a combination of what was previously
known and what new data indicate. Analysis of simulated data
provided a comprehensive examination of the performance of the
Bayesian approach with respect to sample size and prior distri-
butions. Because true values were known, bias could be assessed.
The Bayesian analysis generally gave less biased estimates of ESW
(�), while both the Bayesian method and Distance gave unbi-
ased estimates of density (Fig. 5). Distance performed better than
the Bayesian method when the prior distribution in a Bayesian
analysis was “wrong” in the sense that it was different from the
current data. In terms of precision, confidence intervals of Dis-
tance were slightly larger than probability intervals (Fig. 6). The
tendency for confidence intervals to be larger than probability inter-
vals decreased with sample size, for estimates of ESW and density
(Fig. 6).

We have shown through the analysis of the simulated two-year
dataset that the informative prior distribution can improve the pre-
cision of the posterior distribution, especially when the sample
size is small. Financial and logistical constraints may often pro-
hibit researchers from obtaining an ideal sample size. By using

the Bayesian approach, one can maximize usable historic infor-
mation about the system. Although the Distance approach can use
auxiliary data to construct a global detection function for a small
dataset such that estimation can be accomplished, this approach
makes an implicit assumption that the detection function was
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Given the total number of available objects in the sampled area
(Na), and the detection probability (Pa), the observed number of
objects (n) follows binomial distribution:

p(n|Na, Pa) =
(

Na

n

)
Pn

a (1 − Pa)Na−n (A5)
T. Eguchi, T. Gerrodette / Ecologi

dentical for the two datasets. The assumption, however, is often
ot valid. The Bayesian approach does not assume equal detection

unctions, but uses the information from the ancillary data in the
orm of prior distributions to facilitate the inference for the small
ataset.

The choice of prior distributions has been a contentious issue
etween the anti-Bayesians and Bayesians (e.g., Dennis, 1996, 2004;
elman, 2008a,b). In our view, a prior distribution is not a mea-
ure of one’s belief but a probabilistic measure of knowledge
onstructed from available information. If one wishes the current
nalysis to be independent of previous information, vague prior
istributions can be used to force the posterior distribution to be
olely a function of likelihood functions and new data. On the
ther hand, if one wishes to include existing data that are rele-
ant to the current analysis, non-vague prior distributions provide
means of doing that. The process of creating a prior distribution

equires comprehensive examinations of the existing information
n the parameters, which facilitates a thorough understanding of
he system, including the sampling and data-generating processes
Goodman, 2004). We, therefore, suggest using various defendable
riors in an analysis and presenting results for all priors under
onsideration. For a large sample size, the choice of priors may be
nconsequential. For a small sample size, the choice of prior should
e explained.

The proposed Bayesian approach to line-transect analysis can
e extended in several ways. First, objects could occur in groups
ather than singly. Second, detection on the transect line might
ot be perfect so that g(0) < 1. If the data estimating g(0) were
ased on a separate study, the results of Raftery and Schweder
1993) on a Bayesian approach to inference on the ratio of two
ndependent parameters would be relevant. Third, other detection
unctions could be used (Buckland, 1985), particularly the two-
arameter hazard-rate function. Adjustment terms to a detection
unction could be used for additional flexibility to fit the detec-
ion function (Buckland et al., 2001). Such adjustments result in
etection functions that are not proper probability density func-
ions, but they could be standardized numerically in a Bayesian
nalysis. Fourth, covariates that affect detection probability could
e included (Marques and Buckland, 2004; Gerrodette and Forcada,
005). Fifth, the assumption of independence of sightings could be
elaxed by considering likelihood functions other than the bino-
ial for the number of detections (Sen et al., 1974). Sixth, the

pproach can be treated as a component of a larger hierarchical
odel, where other processes and states may be included, such as

ifferent age groups, locations, movements, and sexes (Thomas et
l., 2004; Carlin et al., 2006).

In this development, we did not consider the variability associ-
ted with the coverage probability (a/A). We treated the sampled
rea (a = 2LW) as a fixed quantity, as it is done in a conventional
istance analysis. In reality, however, the coverage probability is
arely equal throughout the study region (Borchers and Burnham,
004). Strindberg et al. (2004) introduced an analytical method
o deal with variable coverage probabilities for computing the
otal abundance. In our development, a posterior distribution of
a, hence D, can be obtained for each transect line. To com-
ute the total abundance, while taking into account the variability

n coverage probabilities, the posterior distributions of D’s may
e treated as a function of environmental and geographic vari-
bles. Assuming the random placement of transect lines, density
f the species may be modeled for the survey region, provid-
ng the total abundance. Such an approach, although not in the

ayesian framework, has been used for abundance estimation of
olphins in the Mediterranean (Cañadas and Hammond, 2006,
008).

We have shown that the Bayesian approach is a powerful
ool for line-transect analysis, especially when information on
delling 220 (2009) 1620–1630 1627

ESW and density is available from other studies and new data
are limited. Even with the additional sampling uncertainty to
the analysis, the precisions of parameter estimates are compa-
rable to or better than the equivalent analysis using Distance.
The Bayesian approach is not a replacement for the Distance
approach, however. Because analysis can be done relatively eas-
ily using computer packages, Distance and Bayesian approaches
can be used as complementary analytical tools in a line-transect
analysis. We think that the inference on parameters should be
based on as much information as possible. The Bayesian and Dis-
tance approaches should be considered as two possible methods
to make inference about the density and abundance of a popula-
tion.
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Appendix A. Derivation of the joint posterior on Na and �
for unbinned data

The likelihood function for the perpendicular distance is:

f (y|�) = 2

√
�

2�
exp

(
−�y2

2

)
(A1)

where y ≥ 0. We assume that knowledge of � can be represented by
a gamma distribution with hyperparameters ˛ and ˇ, where � > 0,
˛ > 0, and ˇ > 0. The prior distribution on � is thus

p(�|˛, ˇ) = ˇ˛

� (˛)
�˛−1 exp(−�ˇ) (A2)

Using these models, detection probability (Pa) can be written as:

Pa =
∫ W

0
g(y|�) dy

W
= 1

W

√
2�

�

∫ W

0

√
�

2�
exp

(
−�y2

2

)
dy (A3)

Using the properties of the normal distribution (A3) can be
expressed with the standard normal cumulative distribution func-
tion (˚(x)):

Pa = 1
W

√
2�

�

[
˚
(

W
√

�
)

− 0.5
]

(A4)
Substituting the binomial observation likelihood function, the
half-normal detection likelihood function, and the prior distribu-
tions into the joint posterior distribution and using the conjugate
property between normal and gamma distributions, the joint pos-
terior of Na and � conditional on the observed data is:
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y3−2˛ exp − ˇ
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(A10)

where y ≥ 0, ˛ > 0, ˇ > 0. Although this probability density function
is not a gamma distribution, we approximate this distribution with
a gamma distribution. We think the difference between the two
distributions is inconsequential for analysis (Fig. A1).
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(Na, �|y, n) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(Na)p(�)p(n|Na, �)p(y|�)

p(Na)�˛ exp(−�ˇ)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na−n
n∏

i=

p(Na)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na−n�˛ exp(−�ˇ)
(

p(Na)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na−n�˛+(n/2)
(

1
2�

)n

p(Na)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na−n�˛+(n/2) exp

(

p(Na)�˛2−1 exp(−�ˇ2)
� (Na + 1)

� (Na − n + 1)
Pn

a (1 − Pa)Na

here ˛2 = ˛ + n/2 and ˇ2 = ˇ +
∑

y2
i
/2, i = 1, . . ., n.

ppendix B. Prior distribution on effective strip width

For the prior distribution on �, which is the precision of the half-
ormal detection function, we express the parameter in terms of
he effective strip width (ESW). Following standard line-transect
otation, ESW is denoted � and defined as:

= 1
f (0)

(A7)

here f(0) = (2/��2)1/2 for the half-normal detection function and
2 is the variance. Here, we redefine f(0) in terms of ESW (�). Solv-

ng for 1/�2 yields

1
�2

= �

2�2
= � (A8)

here � > 0 and �2 > 0. Consequently, there is a one-to-one rela-
ionship between � and �2 of the detection function.

To preserve the conjugate property between the gamma and
alf-normal distributions, the prior distribution on the ESW (�) is
ransformed into a gamma prior distribution for �. The assumption
hat � ∼ Gamma(˛, ˇ) results in �2 ∼ inv-Gamma(˛, ˇ), and because
2 = 2 �2/�, �2 ∼ inv-Gamma(˛, ˇ1), where ˇ1 = (�/2)ˇ. Finally, we
pproximate the distribution of � by another gamma distribution,
.e., � ∼ Gamma(˛�, ˇ�). Although mathematically � does not fol-
ow a gamma distribution when �2 ∼ inv-Gamma(˛, ˇ), the gamma
istribution is convenient and reasonable for practical purposes
Appendix C).

During an analysis, the transformation process is reversed. From
he information on �, we compute the distribution of �, which is
pproximated by a gamma distribution. We start with the prior
nformation on the mean and variance of ESW (�̂ and v�, respec-
ively). We find appropriate gamma parameters ˛� = �̂2/v� and
� = �̂/v�. We then generate random variables (�) from this
amma distribution. Another gamma distribution then is fitted to
he inverse of the squares (1/�2), using the method of moments.
et the parameters of this fitted gamma distribution be ˛0 and ˇ0:

1
�2

= ı∼Gamma(˛0, ˇ0). (A9)

Equivalently,

ˇ˛0
0 ˛ −1
(ı|˛0, ˇ0) =

� (˛0)
ı 0 exp(−ˇ0ı),

here ı > 0, ˛0 > 0, and ˇ0 > 0. Rewriting ı in terms of �,

= 2�

�
,
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(A6)

because � = �/(2�2) (A8). The distribution of � can be found via
transformation. Let � = �ı/2,

g(�|˛0, ˇ0) = ˇ˛0
0

� (˛0)

(
2�

�

)˛0−1

exp

(
−2ˇ0�

�

)∣∣∣ d

d�

2�

�

∣∣∣
= ˇ˛0

0
� (˛0)

(
2
�

)˛0−1 ( 2
�

)
�˛0−1 exp

(
−2ˇ0�

�

)

=
(

2ˇ0/�
)˛0

� (˛0)
�˛0−1 exp

(
−2ˇ0�

�

)
,

where � > 0, ˛0 > 0, and 2ˇ0/� > 0. This shows that g(�|˛0, ˇ0) is
another gamma distribution with parameters ˛0 and 2ˇ0/�.

Appendix C. Derivation of the exact distribution of �, when
1/�2 ∼ Gamma(˛, ˇ)

Let X = �2 and Y = g(x) = √
x.

f (x) = ˇ˛

� (˛)

(
1
x

)˛−1
exp

(
−ˇ

x

)
g−1(y) = y2

fY (y) = fX (g−1(y))
∣∣∣ d

dy
g−1(y)

∣∣∣ = ˇ˛

� (˛)

(
1
y2

)˛−1
exp

(
− ˇ

y2

)
2y

˛
( )
Appendix D. WinBugs model specification to conduct the
proposed Bayesian analysis with unbinned data and the
wooden stake dataset. Only one set of initial values is
provided. Data are not truncated.
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ig. A1. Comparison of cumulative distributions (CDF’s) of 1/�2 between the empir-
cal (solid) and fitted gamma distributions (dotted). An empirical distribution was
reated by taking the squared inverse of gamma distributed random numbers with
mean (�̂) and variance (v�). Another gamma distribution was fitted to the squared

nverses using the method of moments (dotted line). In the analysis, gamma distri-
ution (dotted) is used to approximate the true (solid) distribution.
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